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Is There a P-Wave Bound State of WLWL? 
On the Dynamical Generation of a p Meson in the CT Model 

D. Atkinson, M. Harada, and A. I. Sanda 

Abstract 

We investigate the possibility that the Higgs lagrangian predicts the existence of a 

P-wave WL.WL resonance. This problem is equivalent to studying the formation of the 

p meson by the dynamics contained in the o model. Using the Pad& approximation, 

Basdevant and Lee had claimed that p is generated dynamically. We show that their result, 

while computationally correct, is not significant, because of the position of the Landau 

ghost. For the same reason, a I+‘LI+‘L P-wave resonance below 2TeV is not expected, 

unless the standard model is violated. 
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1.0 INTRODUCTION 

It is by now generally accepted that the gauge sector of the standard model, based 

on the SU(2) @I U(1) gauge group, agrees extremely well with experiment. What is not 

tested at all, in this very successful electroweak theory, is the mechanism for breaking the 

symmetry spontaneously. It is likely that the next major advance in high energy physics 

will come from discovering which mechanism nature has chosen. 

The Superconducting Super Collider (SSC) is being built to study this symmetry 

breaking. The first item on the agenda is the Higgs boson search. The electroweak theory, 

however, does not constrain the mass of the Higgs. If this mass is below SOOGeV, SSC 

should be able to see the Higgs, but if the mass is larger, direct detection will be impossible. 

We ask what is the best strategy for SSC to study the symmetry breaking, should 

the Higgs boson be too heavy for straightforward detection as an S-wave resonance. For 

definiteness, we limit ourselves to the minimal standard model Higgs lagrangian. We then 

look for the predictions that can be experimentally checked. 

Our starting point is the well known isomorphism between the Higgs lagrangian and 

the c model. The longitudinal components of W bosons correspond, in this isomorphism, 

to s mesons. The Higgs boson corresponds to the U. If the coupling of L,y is as strong as 

that of L,, the Higgs will not be seen at all! After all, since r~ is so broad, there are serious 

doubts as to its existence as a second-sheet pole of the TX scattering amplitude. On the 

other hand, nobody doubts the existence of the p. Could it be that a P-wave resonance of 

the longitudinal W’s will be found instead of the Higgs itself? We can try to answer this 

question by looking at the *?r case and investigating the nature of the p meson. 

At this point, the reader may wonder if all this is necessary. The lattice analysis gives 

the following bounds:’ 

%~s,.(F4 < 0.3%) < 5304~60 GeV 

‘7&,.(F4 < 3.0%) < 590 f 60 GeV , 

where the first bound applies if one requires that the F4 lattice cutoff effect is no larger than 

0.3%, whereas the second bound is applicable if one tolerates a 3.0% cutoff effect. These 

bounds imply that if the Higgs boson does not satisfy them, then new physics (beyond 

the standard model) is guaranteed at about this energy.2 We note that these bounds are 

too stringent: they correspond to m, < 204 (227)MeV. Experimentally, m, does NOT 

satisfy them. Thus we conclude that L, is not the fundamental theory which governs pion 

dynamics. Nevertheless, L, describes the pion physics below 300 MeV so well that we don’t 



learn anything about the nezu physics, namely &CD, from the low energy experiments. In 

the Higgs sector, we may be in the same situation. The Higgs’ mass could violate the 

bound. Yet, no new physics effect may show up in the energy region given by the triviality 

bound-the relevance of the lattice pronunciamento must be called into doubt on purely 

experimental grounds. 

We expect that L, is a low energy effective theory of &CD. But the region of its 

validity may be confined to a very low energy region. Perturbatively, it cannot explain ?T?T 

dynamics in the energy region below 1 GeV. There is namely a P-wave resonance, the p 

particle, which is not contained in the perturbative spectrum of the v model. There are 

two possibilities: 

1. Some nonperturbative dynamics contained in L, generates the p. One might guess, 

in this case, that L, can generate all observed phenomena in xx scattering; at least 

until KR effects become significant. 

2. The existence of p in X?T scattering is due to a remnant of the underlying QCD 

dynamics, i.e. p is predominantly a bound state of qb and an effective lagrangian 

governing the dynamics of p has to be added separately.3 

That is to say, if the dynamics required to bind the p meson is already present in L, (a low 

energy effective theory of QCD), then LJJ too should generate a P-wave WW resonance, 

while the origin of LH does not need to be specified. On the contrary, if p is mainly a qq 
bound state not implicitly contained in L,, QCD is required to account for the properties 

of p. In this case, if it turns out experimentally that there is a P-Wave WW bound-state, 

we would have to conclude that physics beyond the standard model is playing an essential 

role.4 

In this paper, we shall investigate the possible existence of resonances in the Higgs 

sector of the standard model. The pion dynamics observed in nature, as well as past 

theoretical studies of L,, can be used to analyze the Higgs and W interactions when the 

coupling is large-i.e. when the Higgs is heavy. 

Twenty years ago, Basdevant and Lee5 (BL) claimed that the dynamics implied by L, 
generates a resonance in the P-wave amplitude. Using a Pad& approximant, they obtained 

mp = 760 MeV 

rp = 35 MeV. 
0) 

This result, if true, would imply that LH, when the Higgs is heavy, generates a resonance in 

WW scattering. Furthermore, it is likely to be narrow, and therefore it would be easier to 
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find than the Higgs boson itself. Its existence would have a profound consequence for SSC 

experiments. However, we shall show below that, while this BL result can be reproduced 

numerically, it is an artifact of the Pad6 approximant. 

Two years ago, Dawson and Willenbrock’ (DW) studied LH to one loop level. The 

renormalization prescriptions of BL and DW are quite different. For example, BL define X 

at m, while DW define rn= on its mass shell. As a check on our results, each computation 

will be done independently in these two renormalization schemes. 

2.0 PRELIMINARIES 

2.1 Higgs Lagrangian 

It has been widely recognized that the Higgs Lagrsngian is isomorphic to the 

O(4) 0 model lagrangisn. For completeness, we describe the isomorphism here. 

The Higgs lagrangian is written in terms of the SU(2)r. doublet 

The SU(2) @ U( 1) symmetry breaking is caused by the Lagrangian 

.b =a,++~++ ;p2d+4 - qpdq. (3) 

This lagrangian has an O(4) symmetry, as it is invariant under a rotation among 

(d:, 4:, dy, 4;). In terms of the vacuum expectation value V, 

Lo = $ag. afiG + ha,HaFH - h2H2 - hHp. w’ + HI - $+. 2 + HI2 (4) 

where we identified 

d:=wl, 4;=w2, &=w3, &=v+H. 

The Higgs mass is mH - ’ - 2Xv2. Now note that if we make the identification 

LH becomes the linear 0 model lagrangian. In the c model, the 5’s are the pseudoscalar 

Nambu-Goldstone bosons associated with chiral symmetry breaking. When 4; acquires a 
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vacuum expectation value, the gauge bosons become massive and w’ turns into the longitu- 

dinal components of the gauge boson. In L, and La, the energy scale is set by v. For L,, 

21 = fir = 93MeV, the pion decay constant. For Lg, v = 2-iG, -i = 246 GeV, where GF is 

the Fermi coupling constant. Since v is the only energy scale appearing in the theory, the 

Higgs mass bound given in the introduction can be translated into the 0 mass bound by 

means of a scaling factor f,(fiG~)‘.. B ecause of this isomorphism, it is clear that both 

BL and DW actually computed one-loop corrections to the same processes. 

2.2 How good is the CT model below 1 GeV? 

The 0 model was introduced to study the consequences of chiral symmetry, and to 

translate the results of current algebra into a field theory language. While it should 

describe the physics of the xx interaction at low energy, its validity at high energy is not 

guaranteed. This is particularly ~true if the coupling X is large, so that the usefulness of 

the perturbative expansion is in question. BL have intrtiuced the Padk approximation of 

the partial-wave amplitudes to remedy the lack of convergence of the perturbation series. 

They point out that the unitarity constraint is preserved in this approximation. 

Before we go into the details of our computation, we wish to show that the D model, 

together with the Pade approximation, gives a reasonably satisfactory description of the 

S-wave I = 0 and 2 ?TR phase-shifts below 1 GeV. Although the CT is no longer classified 

as a resonance, the 1 = 0 S-wave phase-shift passes through $ at 858MeV. By choosing 

y = $$ = 9.23, we can ensure that the o model result has an S-wave resonance at this 

point. In Figure 1 we show the experimental I = 0 and I = 2 S-wave phase-shifts, up 

to 1 GeVr’ ( dotted lines). The corresponding output of the [l,l] Pade calculation is also 

shown (solid lines). For comparison purposes, we chose the parameters f* = 125 MeV, and 

X = 5.63, the values used by Basdevant and Lee ,’ but very similar results can be obtained 

by setting fir = 93 MeV. The agreement of these phase-shifts may be said to be reasonable 

up to 900MeV, although our threshold behavior seems to be different from that of the 

interpolation by Roy’s equation. Above 0.9 GeV, the Kf(; threshold opens up, and the 

experimental phase-shift shoots up through and beyond 9 [the fs(l400) resonance]. This 

is not accounted for in the cr model. With this discussion, we conclude that the [l,l] Pade 

approximation to u model predictions at the one loop level is reasonably trustworthy in 

the energy region below about 1 GeV. 
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S-wave phase-shift 
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WV) TIP0ZZO4 

Figure 1. The o Model Computation of I=0 and I=2 S-Wave Phase-Shifts (Solid Lines) are Compared With 
the Available Experimental Data. lo The dotted line is an extrapolation of the experimental data 
to the threshold using the Roy equation. 

3.0 RENORMALIZATION SCHEMES 

First note that mg and X are related by 

Thus once one is renormalized, the value of the other is predicted. In the on-shell 

(OS) subtraction scheme, the physical Higgs mass, i.e. the position of the pole of the 

propagator, is an input. In the mass-independent (MI) subtraction scheme, one introduces 

a renormalization constant for A, defined at some energy scale n, such that a simple B 

function can be obtained. 

In this section, we shall describe the Higgs propagator in two subtraction schemes 

corresponding to 

1. Dawson-Willenbrock: On-shell subtraction scheme; 

2. Basdevant and Lee: Mass-independent subtraction scheme. 

Understanding the precise difference is crucial in cross-checking the results. 
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3.1 On-shell Subtraction Scheme 

The loop contributions to the Higgs self-energy are given by 

An(a) = $$Qz(T) , 

where 
5 

5=2, 
ma 

(7) 

and 

Q2(5) = $[log(-s) +31(z) + 6 - irfi] . (8) 

The integral I(z) can be written: 

1 

I(z) = 
I 

&log[l - zt(l - t)] 

0 

= 
d- 

-410gA=sG-2 
z G-J-Z . 

To first order in X, the Higgs propagator is 

A,(s) = l + “(‘) 
s-m& (s - n+)2 . 

(6) 

(9) 

This expression has a second-order pole at s = m&, which is not correct physically. The 

standard way out of this difficulty is to sum an infinite number of bubbles: 

AH(S) = 
1 

5 - m”B - Al-I(s) . (11) 

This function has the expected pair of conjugate simple poles on secondary Riemann sheets. 

At s = m2,, the real part of this function vanishes and its imaginary part is proportional 

to mk4. 

Note that the mass counter-term was introduced in the lagrangian so that 

Re(Ai’(mH)) = 0. 02) 
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3.2 Mass-Independent Subtraction Scheme 

The 0 propagator given by BL is: 

D-‘(s) = s - iv,’ - MI(s), (13) 

where 

n(s) = M,” {9&(s) + 3B,,} 1 (14) 

with 

ky = Bz, - Bo, (15) 

Bzy(k2) = i I * 1 1 

(2?T)4 P2 - c12 (k - Pj2 - lL:’ 
(16) 

Bo arises from the counter terms in the lagrangian. If one defines a divergent integral such 

as Eq. (16) by dimensional regularization, one can set 

Bo=-L1. 
16x2 E 07) 

With this choice, simple mass-independent renormalization group equations can be derived. 

BL in their work adopt the following definition: 

In our work we propose a slightly different regularization prescription: 

Bo=~j~(P2~P*)2+(f-7+log4*)+&logp, (19) 

which reduces to Eq. (18) in the case n = mT. In this way we obtain the same beta function 

as in the usual renormalization method (see Section 5). We thus loosely call Eq. (19) the 

mass-independent subtraction prescription. 
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3.3 The Relationship Between OS and MI 

We now discuss the relationship between the OS and MI subtraction schemes. In the 

m, = 0 limit, BL obtained 

f,” = 2 (1+ $$). 

The self-energy can then be written in terms of A4,” = 2XMrf: as 

&f,(s) = ~M~{~log(~)+~I(~)+(12log~-7,2)}. 

Note that if we set 

XMI =A and M,=ma at p=mHexp 

we obtain 

bfI(S) = 1 ~-a{qlog(~)+%I(~)+(9-~)} 

(20) 

(21) 

(22) 

(23) 

and then lI~1 coincides with II (see Eq. (6)): thus Eq. (22) gives the OS subtraction 

scheme in terms of the MI subtraction scheme. 

With this procedure to go from one renormalization prescription to the other, we can 

check for the consistency of the two computational schemes. 

4.0 SECOND-ORDER RESULTS 

In terms of the Mandelstam variables s, t, and u, we define the dimensionless quantities 

5 u 
1=2 

mH 
y=+ 

mH 
.Z=y 

mH 

with I + y + .z = 0. To order A, the W;‘Wl + Z,Zr. amplitude is 

Mo(X,z) = g. 

We write the order X2 contribution, in the on-shell formalism, in the form 

2 

-W(hZ,Y) = (12~;12P(I,Y,-z -y) 

(24) 

(25) 

(26) 
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where, following the analysis of Dawson and Willenbrock,6 we split up the function P into 

6 terms: 

p(&Y,zl= - i&g. 

Notice that the I in the denominator here is cancelled by an z in the numerator in 

Eq. (26). It is included to emphasize the fact that Mr(X,z, y) tends to zero as t -+ 0 (in 

fact faster than z). 

The Q’s come respectively from the wave-function renormalization constant, the 2- 

point function, the 3-point function, the bubble diagrams, the triangle diagrams and the 

box diagrams: they correspond precisely to the six terms in Eq. (2.31) of Ref. 6, and so 

we shall not reproduce them here. 

4.1 Higgs Propagator and Pad6 Approximation 

The contribution of the Higgs propagator to the W,‘WF + 2~2~ amplitude is 

?i? = -2Xm$A&) ; (28) 

and with use of Eq. (10) for the propagator, v up to and including X2 is 

2Arn& 
xTll+7i71=- - 

2X%-+-I(s) 

5-m:, (s-m&)2 

The bars indicate that these are not the full sigma-model first- and second-order terms, but 

only the propagator contributions. The second-order term has a double pole. However, 

the (I, 11 Pad& approximant of this expression is 

il?[“‘l = a0 -- 
1 -MI/MO 

= 
-2X74 

s - mg - AH(s) ’ 

(29) 

which has a pair of simple poles, and is in fact exactly the same answer one would have 

obtained by substituting the infinite sum Eq. (11) into Eq. (28). 
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This is not the end of the story, since the full amplitude to order X contains a contact 

term as well as the Higgs propagator, giving 

2Xm$ _ -2xs 
MO=-2X- - 

s-m& s-m:, 

The complete (1, l] Pad.4 approximant can be written 

M[‘,ll = Mo 
1 -MI/MO 

-2As 

= s - m:, + (s - 774,)*Mr/(2Xs) ’ 

(30) 

(31) 

where Ml is the full second-order amplitude. This contains ?i?r, from the propagator, 

and so has a double pole, but it also contains many other terms. Notice that, if one were 

to replace Ml here by vr , there would be problems at s = 0, since Er is not zero at 

s = 0, indeed it diverges logarithmically. This would lead to an amplitude behaving like 

s*/ log s at threshold, which is wrong. However, the complete second-order amplitude, 

Ml, behaves like s* log s as s --) 0, which means that the threshold behavior of the Pad& 

approximant Eq. (31) is the same as that of the first-order contribution, namely 2X5/m&. 

Dawson and Willenbrocks observed that Ml has a double pole at s = mi: they sug- 

gested the ad hoc replacement of the fist two terms in the perturbation series-Eq. (lO)- 

by the infinite sum of bubbles-Eq. (ll)-but only when s is close to the Higgs mass. 

The difficulty is that use of Eq. (11) for small s values destroys the threshold behav- 

ior, 2&/m;. Thus the above authors were led a procedure of using Eq. (10) for small 

a-to maintain the correct threshold behavior-but Eq. (11) for larger values of s in or- 

der to remove the unwanted double pole. As we have seen, the [l, l] Pad& approximant 

automatically takes care of both the threshold and the pole in a unified manner. 

The Spence functions that are needed for the calculation of the box and triangle di- 

agrams were computed in a FORTRAN program using the algorithm of ‘t Hooft and 

Veltman.’ 

In the discussion of the [1,1] Pad6 approximant in Section 3, M[‘v’] in Eq. (31) is a 

function of s and t. For technical reasons, in the calculation of phase-shifts it is more 

convenient first to project on to the pure isospin states (I = 0, 1 and 2), then to compute 

the first- and second-order contributions to the partial waves, and finally to make the [l,l] 

Pad6 approximation. This has two advantages: 
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1. The partial waves so obtained are exactly elastically unitary. 

2. The occurrence of poloids is avoided (see Ref. 5 for a discussion of this point). 

5.0 LANDAU GHOST AND ASYMPTOTICS 

The 0 model is a low energy effective theory of &CD. The phase transition from the 

e model to QCD has to occur below the energy at which the model develops the Landau 

ghost. Thus the position of the Landau singularity gives us a rough idea of the point 

beyond which we can no longer trust our results. 

The usual p function for La is 

8logX 3x 
P(X) = a = 3 (32) 

to the lowest order, where /1 is the renormalization point. In our mass-independent sub- 

traction scheme, 

X0 E X(1 - 12X&) , (33) 

where Bs is defined by Eq. (19). Noting that 

we get the same B function, Eq. (32), as in the usual momentum renormalization scheme. 

The coupling runs as follows: 

A(P) = 4PO) 
1 - &(PO) log fi 

The running coupling blows up at the Landau point, say pi, defined by 

279 
pL=poexp - . [ 1 3Go) 

(35) 

(36) 

The position of the Landau ghost depends critically on the p function and thus on the 

details of the renormalization scheme. A somewhat more physical procedure is to look for 

a Landau singularity in the four-point function. Let us start with an asymptotic form of 

the scattering amplitude, which we can express in analytic form. 
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The asymptotic form of the second-order amplitude for large z and y is8 

MI(~+,Y) N --$ 4log(-2) +log(-y) + log(-2) - $ti- ; 1 , (37) 

Since t = -s( 1 - cos 8)/2 and u i -s( 1 + cos 6)/2, w h ere 6 is the scattering angle, it 

follows from Eq. (24) and Eq. (37) that, for large IsI at constant 0, 

ReMI(X) 610g~-$&-~+log1-~2B 
4 I 

. (38) 

This expression is good also for large negative values of s, where Ml is real (the euclidesn 

region). However, in this same limit of very large IsI, we see from Eq. (25) that 

MO(~) - -2x ; (39) 

and so in this limit the [l,l] Pad& approximant is 

M[lvl](X) = MO 
1 -MI/MO (40) 

610gk!s 3 ’ 4 >I 
-1 

4 
-,?r&-z-log 

l- cos*e 

The asymptotic expression Eq. (37) holds in all directions in the complex s-plane, in 

particular for real, negative s. This means that a pole is unavoidable in this euclidean 

region: the redoubtable Landau ghmt. According to the asymptotic estimate, this occurs 

at the point s = -mi, where 

1 4rv 

mL = mH exp 
-++&+&+;log2 
WY I 

This expression is obtained from the lowest point at which the denominator in Eq. (40) is 

zero: this occurs at cos0 = 0. We have also used Eq. (5) to eliminate X in favor of mH. 

Of course this estimate is approximate: it is only trustworthy for large values of mL. To 

improve on it, we simply return to the Pad& result itself [Eq. (31) and Eq. (26)] which gives 
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-1 
(s - m;)M[1”](X) = i&P(s,Yl--s -Y) 1 

A pole occurs at the euclidean point, say z = IL < 0, at which 

A= 
1 - ZL 

PC,L> -ALP, -~Ll2) 

The strategy for finding rnL is as follows: 

l Choose an st < 0. 

. Calculate X from Eq. (43). 

l Set mH = v&X 

l Deduce rnL = mHfi. 

(42) 

(43) 

In Figure 2 we show the ghost mass, rnL, plotted against the Higgs mass, mH, according to 

the above calculational scheme, as well as the asymptotic curve corresponding to Eq. (41). 
Landau point 

I I I I I I I I I I 
30 - 

20 - 

F 
CL 

10 - 

I I I I I I I 1 I I 
0 5 l( 

Tree Mass (TeV) 

Figure 2. The Position of the Landau Ghost Obtained from Eq. (43) and That Obtained from the Asymptotic 
Formula (41) are Shown. 

0’ 
0 

0 

,’ 
0 

\ 

Asymptote ,’ 
4 

/’ 
/’ 

0 
4 / 

/ 
0 / 

Ghost maas 
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A cut-off below the Landau-ghost position could be used in order to make sense of the 

model. Alternatively, we can work without a cut-off, but with the proviso that only those 

features-like resonances-that occur well below the Landau mass rn~ are to be taken 

seriously. 

5.1 Where Can We Trust Our Results? 

In our calculation, we investigated the possibility that the Higgs is heavy-or, equiva- 

lently, the coupling X is large. It is, therefore, important to have some quantitative measure 

which can be used to determine the accuracy of our results. We shall show here that for the 

. 
output obtained using the MI renormalization scheme, a quantitative test can be devised. 

We know that physical quantities cannot depend on the renormalization point, p. 

Table 1 shows the p-dependence of X,mg,Pa,m,,P,, and the position of the Landau 

singularity determined from Eq. (36). F or each box, Xs and ~0 are given: they were 

determined by matching the results from the OS renormalization scheme, with use of 

Eq. (22). The results for two other representative values of p are also displayed. It can 

be seen that results for rn~~ below 1 TeV are reasonably p-independent. Around 1 TeV 

and above, the p-dependence becomes severe and the trustworthiness of our results is then 

marginal. In Figure 3, we show the p-dependence of the S and P wave phase-shifts for 

mg = 0.5 and 1 TeV. 

Table 1. P-Dependence of v Model Parameters in the Mass-Independent 
Subtraction Scheme. All quantities are in TeV except X, which is 
dimensionless. 

I 

P x mfl 

.25 1.817 .50 

/Jo=.35 x0=2.0 .50 

.45 2.169 .50 

.40 3.305 .73 

i~=.522 x0=4.5 .75 

.60 4.970 .76 

.60 6.771 .96 

PO=.697 X0=8.0 1.00 

.80 9.618 1.06 

rn/2 

.03 

.03 

.03 

.08 

.09 

.09 

.16 

.I8 

.21 

3.14 .04 

3.41 .06 2.25 

-!--I- 3.56 .07 

2.90 .ll 
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(a) 
MH = 0.5 TeV I = 0 S-Wave 
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WY TIP02207 
Figure 3. S and P Wave Phase-Shifts for MH = 0.5 and 1TeV. It can be seen that there is very little 

p-dependence for MH = 0.5 TeV. For MH = 1 TeV, a considerable /I-dependence begins to appear. 
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MH = 1 .O TeV I = 0 S-wave 
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Figure 3 (Cont.) 
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In Figure 4, we show the p-dependence of the S and P wave phase-shifts from which 

BL have computed the mass of the p meson.” There is considerable p-dependence in the 

results. This finding, together with the fact that we can never obtain such a light p using 

the OS renormalization scheme, validates our conclusion that the BL result is an artifact 

of the Pade approximation. 

Let us examine the origin of the p-dependence shown in Table 1. The main source of 

the variation is the sharp variation of X(p), when ~0 is close to the position of the Landau 

ghost, pi. The position of the Landau ghost is controlled by the P-function, and is highly 

dependent on the renormalization scheme. The p-dependence shown in Table 1 applies 

only for the MI subtraction scheme. In particular, the results shown in Table 1 do not 

invalidate the results obtained by the OS renormalization scheme. 

To what extent can we trust the results obtained by the OS renormalization scheme? 

At any rate, when the results obtained from OS and MI schemes agree, they are trustworthy 

(i.e. results below 1 TeV). Also, as seen in Figure 2, the Landau singularity obtained in 

the previous section never dips below 3TeV. Hence we can be reasonably sure that when 

the energy is sufficiently smaller than 3TeV, the OS results can be trusted. 

5.2 Results 

With the provisos mentioned in the previous section, we present the results of the OS 

renormalization scheme. In Figure 5 we show typical results for the I = 0 and I = 2 

S-wave, and the I = 1 P-wave phase-shifts, corresponding to a Higgs mass of 1 TeV. The 

I = 0 S-wave carries the Higgs resonance as a broad, asymmetrical peak. The phase-shift 

goes through 5 at vG = m,y, and it is convenient to define the lower half-width to be the 

energy difference between the : and the $ points. For example with rn~ = 1TeV this 

half-width is O.lSTeV. The I = 2 S-wave is small and repulsive, as expected. The I = 1 

P-wave has a sharp, symmetrical resonance, and we define its mass by the t point, the 

full width by the energy-difference between the $ and the % points. The ‘rho’ mass and 

full width are in this case 2.99 TeV and 0.12 TeV respectively. 

These masses and widths have been calculated for a number of input tree masses; in 

Figure 6 we display these parameters up to 5TeV tree mass. Note that, in the on-shell 

formalism, the output Higgs mass is equal to the tree mass below about 2.6 TeV: above that 

point it is smaller. The reason is that, although the subtraction scheme guarantees that 

the real part of the I = 0 S-wave amplitude vanishes at s = mi, there is a second point 

at which this happens, and when rns > 2.6 TeV, this point is actually lower than mu. 
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Figure 4. The P-Dependence of the I=0 S Wave and I=1 P Wave Phase-Shifts for the Set of Parameters Which 

Yields the Result of Basdevant and Lee Shown in Eq. (1). Th ere is a considerable dependence on 
the renormalization point. We also emphasize that this result cannot be reproduced if the on-shell 
renormalization scheme is used. 
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Renormalization Scheme. The position of the Landau singularity is also shown. 
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The ‘rho’ mass is never less than 2.6 TeV, this minimum being reached when the Higgs 

mass is 2 TeV. In the following section we will discuss what significance such a high mass 

can have, since an effective theory must essentially be cut off, in view of the occurrence of 

a Landau ghost. 

6.0 CONCLUSIONS 

In this paper, we have studied the simplest Higgs lagrangian in order to search for 

effects which can be detected at SSC. In particular, we are interested in an alternative to 

a Higgs search, should the Higgs be too heavy to be detected. 

We have used the well-known isomorphism between the Higgs lagrangian and the O(4) 

o model. The latter has been studied quite extensively in the literature. In particular, 

Basdevant and Lee have claimed that xx resonances are generated dynamically. If substan- 

tiated, this claim would, after scaling to the TeV domain, have interesting consequences for 

SSC. In view of the fact that it is much easier to detect the p meson than the o resonance 

in xrr scattering, we pointed out that a P-wave WW resonance is likely to be seen before 

a Higgs with mass above 800 GeV is detected. 

Our first step was to check the result of Basdevant and Lee. We could indeed reproduce 

their results; but the value of the coupling constant (defined at m,) needed to produce 

their effect is unacceptable. In fact for their value of coupling constant, the Landau ghost 

sits between m T and m,! For this reason, a slight change in the renormalization point 

changes the coupling constant considerably; and it also changes the mass of the p. We 

have shown that mp can never be below 1 GeV. 

We have computed the xx phase-shifts and compared them with experiment. The 

agreement between theory and experiment is reasonable for the S waves, considering the 

fact that we have confined ourselves only to the [l,l] Pad& approximation. The P wave 

phase-shift agrees qualitatively with experiment: quantitatively it is however unsatisfac- 

tory, since it is resonant only at 1 GeV. 

The agreement between theory and experiment for the S-wave phase-shift up to 1 GeV 

gives us the courage to trust the c model predictions up to about that energy. Thus we 

can be confident that the absence of a resonance at N m p = 760MeV is a reliable result. 

This implies that other particles must be added in order to construct an accurate low- 

energy effective theory of &CD. The fate of our P-wave resonance around 1 GeV is not 

clear: perhaps kaon or nucleon loops will pull its mass down to mp; but it may be that the 

resonance is largely created by exchange of the other particles, and that our 1 GeV effect 
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is a Pade artifact. We expect that the introduction of more massive states will not change 

the prediction for the S-wave phase-shift by more than 10%. 

Turning to our predictions for the Higgs model: from Figure 6 one can read off the 

mass of the P-wave WW resonance pw as a function of mu. Our picture becomes suspect 

around rn~ - 2.5 TeV. In the same figure, we also show the width of the pw. Note that 

While the vector state is considerably heavier (1.5-4 times) than is the scalar one, its 

narrowness may make it detectable. We can be confident that the Q model predict3 the 
absence of a P-wave resonance below ,9 TeV; conversely, the experimental discovery of such 

a state would definitely imply violation of the standard model and would consequently 

herald new physics. 
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APPENDIX A 

In this appendix, we shall describe the essential point of the equivalence theorem 

without going into the details (see Ref. 9 for a proof). Consider a gauge boson propagator 

in the unitary gauge: 

(45) 

We can split up this propagator into the longitudinal and transverse pieces: 

Qw - y 
4”(q) = q2 _ &fZ - y&F 

W 

The second term can be interpreted as an exchange of a massless scalar boson with wrong 

statistics (- sign). It is accompanied by two kinematical factors & which change the 

spin-one coupling of a vector boson to a spin-0 coupling of a Nambu-Goldstone boson at 

both ends of the propagator. Now the W boson fusion process shown in Figure 7 can 

be split into four pieces. Figure 8 represents a fusion of two massless Nambu-Goldstone 

bosons. This fusion process is given by: 

Ql~ qza rpR -- 
Mw Mw 

w &&TQ’B . (47) 

At high energies the longitudinal polarization of a spin-one particle is $, so the above 

represents the scattering amplitude for on-shell longitudinally polarized gauge bosons. 

Thus if Figure 8 dominates over the other three graphs, the amplitude for WW scattering 

is dominated by that of WLWL scattering, which in turn is equal to the Narnbu-Goldstone 

boson scattering amplitude. Now, if the self-coupling of Nambu-Goldstone boson is strong, 

Figure 8 will indeed dominate over the other diagrams, since they are suppressed by the 

gauge coupling constants. Note that the above argument applies only when the gauge 

boson masses can be neglected compared to their energies. 
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